Injury Prevention for the Female Athlete Special Considerations for Research and Care

Kathryn E. Ackerman, MD, MPH, FACSM

Medical Director- Wu Tsai Female Athlete Program, Boston Children's Hospital
Associate Director- Sports Endo Research Lab, Massachusetts General Hospital
Associate Professor of Medicine- Harvard Medical School
Chair- USRowing Medical and Sports Science Committee

Disclosures

- Grant/Research Support:
- Joe and Clara Tsai Foundation
- Nike Foundation
- Paid Consultant/Speaker:
- Gatorade Sports Science Institute
- Hologic
- USRowing, USA Swimming, USOPC

Teenage girls make up the fastest growing segment of children and adolescents participating in organized athletics!

Common Concerns for Female Athletes by Age

Injury Patterns in Female vs. Male Athletes

- Higher rates of ACL injuries

Adolescent girls participating in pivoting and jumping sports have $2-8 X$ rate of ACL injuries compared to boys in the same sports

- More patellofemoral syndrome
- Greater concussion rates, more symptoms, and more time lost to concussion

Greater reporting?

- Greater prevalence of eating disorders
- More bone stress injuries

Physiological Differences in Women compared to Men

Morphological/Physiological Variable	Result
$\sim 30 \%$ lower max cardiac output	Less capacity to move blood, \downarrow work capacity
$\sim 25 \%-50 \%$ Lower VO_{2} max	Less work capacity
Lower blood volume	Less O_{2} carrying capacity $\sim 45 \%$ Less lean body mass lower body strength
$\sim 11 \%$ lower hemoglobin	$\downarrow \mathrm{O}_{2}$ carrying capacity of blood
$\sim 30 \%$ greater body fat \%	More metabolically "dead mass" to carry while working
\sim Greater HDL	In untrained women, leaves less capacity for training
Lewis DA, et al. Sports Medicine, 1986.	Hilton EN and Lundberg TR. Sports Med, 2021.
Female Athlete	

Testosterone and Other Influences

- There are ~3000 genes that are differentially expressed in male vs. female skeletal muscle
- Boys are prenatally and perinatally exposed to androgens
- Prior to puberty, boys and girls do not differ much in height, muscle, or bone mass
- However, 9 yo males are about 9.8% faster over short sprints, 16.6% faster over 1 mile, can jump 9.5% farther, perform 33% more push-ups in 30 s, and have 13.8% stronger grip
- Testosterone exposure during puberty in males (resulting in 15-20x more circulating T than children or women) \rightarrow
- Greater height in men (12-15cm)
- Larger bones
- Greater muscle mass
- Greater strength

Estrogen

- Anabolic
- Has neuroexcitatory effects
- Aids in membrane stabilization

- Is an anti-inflammatory hormone
- May decrease collagen synthesis and density

Estrogen

- Anabolic

- Protein-sparing effect
- During endurance exercise at approximately 65% maximal O_{2} consumption, women oxidize more lipids, and therefore decrease carbohydrate and protein oxidation, compared with men
- Estrogen impairs gluconeogenesis
- Luteal Phase

Less reliance on muscle glycogen during submaximal exercise in the fasted state compared to follicular phase and to male athletes

- Exogenous carbs help overcome impaired gluconeogenesis

Progesterone

- Has anti-estrogenic effects

- Raises core body temperature (may help with short duration and hinder longer duration activities)

Devries MC, et al. Am J Physiol Regul Integr Comp Physiol, 2006. Wallis GA, et al. Am J Physiol Endocrinol Metab, 2006.

Female Athlete

McNulty KL, et al. Sports Med, 2020.
Carmichael MA, et al. Int J Environ Res

Important Female Athlete Topics

Smith ES, et al. Auditing the Representation of Female Versus Male Athletes in Sports Science and Sports Medicine Research: Evidence-Based Performance Supplements. Nutrients, 2022.
\square Female Only \square Male Only

B-alanine Caffeine
Male onlyFemale onlyMixed-sex cohortMvF design featuresMvF sub-analysis

Glycerol

Sodium Bicarbonate
Nitrate

The Female Athlete Triad

Stress Fractures (Bone Stress Injuries)

- Microfractures in cortical bone as a result of abnormal bone remodeling in the setting of repetitive stress impact
- 1.5-3.5x more common in females than males
- Location depends on activity, biomechanics, and other factors

Relative Energy Deficiency in Sport (RED-S)

Mountjoy M, et al. Br J Sports Med, 2014, 2018.

Female Athletes at Risk for RED-S

- Survey of 1000 female sport medicine clinic patients (age 15-30 years, $\geq 4 \mathrm{hrs} / \mathrm{wk}$ of exercise)
- Surrogate markers of Low EA: Self-report or DE/ED, BEDA-Q, ESP
- 84.5\% response rate
- Low EA 47.3\%

Ackerman KE, et al. Br J Sports Med, 2018.

Interrelationship of Components of the Triad/RED-S

- Low energy availability
- $\downarrow \mathrm{BMI}$, fat mass, \& lean mass
- \downarrow in FSH, LH, estradiol, androgens
- \downarrow insulin, glucose, IGF-1, T3, and leptin
- \uparrow in fasting PYY, ghrelin, cortisol, and GH resistance

Ligamentous Injuries

- Most common sports injuries of youth
- Children similar until puberty
- Girls and boys have an equal number of ligament sprains prior to adolescence
- Puberty
- Girls and boys have a higher rate of sprains immediately following their growth spurt (PHV) and into maturity
- Girls: peak incidence between 10-14 yrs (5.4/1000 py)
- Boys peak incidence between 15-19 yrs (8.9/1000 py)

ACL

- No published differences in ACL injury rates between the sexes prior to puberty
- Adolescent girls participating in pivoting and jumping sports have
 $2-8 X$ rate of ACL injuries than boys in the same sports
- Female athletes are also at greater risk for developing ACL injuries in high school and college, but their injury rate is similar in professional sports
- Increased lateral tibial slope
- Smaller ACL size
- Suboptimal landing mechanics

Landing Dynamics

- Male:
- more flexion at the knee and hip
- body weight back
- knee in less valgus angulation
- Female:
- less knee and hip flexion
- body weight more forward
- knee in more valgus angulation

ACL

- Neuromuscular patterns in males and females diverge during maturation
- Females:
- Anatomical changes in adolescence include widening of the pelvis, increase in the Q angle, and changes in the center of gravity
- Decreased core stability and strength may cause increased dynamic lower extremity valgus load during sport specific tasks, placing them at increased risk for injury
- Males:
- Increases in power, strength, and coordination with age that correlate with their maturational stage (testosterone!)

Hormonal Effect on Collagen Synthesis?

- Estrogen: increase or decrease in collagen synthesis
- Estrogen + relaxin: decrease collagen synthesis
- Progesterone + testosterone: increase collagen synthesis
- Estrogen + relaxin: decrease collagen cross linking

Hansen M. Proceedings of the Nutrition Society, 2018.
Dehghan F, et al. Scand J Med Sci Sports, 2014.

Hormonal Effect on Mechanical Properties

- Premenopausal women have increased ligamentous laxity vs. males
- No differences between pre-pubertal and postmenopausal males and females
- Some studies found ligamentous laxity increases around ovulation in eumenorrheic women
- Estrogen \& relaxin \rightarrow increased ligament laxity and decreased load to failure (rabbit)
- Testosterone indirectly increases ligament stiffness by decreasing relaxin receptors (rodent)

Correlation of Menstrual Cycle Phase and ACL Laxity and Injury

Relaxin \& ACL Injury

- Prospective study of collegiate female athletes
- Measured relaxin on days 6-8 of the luteal phase
- Relaxin > $6.0 \mathrm{pg} / \mathrm{mL}$ linked to $4 x$ increase in ACL injury
- "Sliding fibril hypothesis"
- Relaxin alters fiber to fiber bonding
- Enhanced sliding \rightarrow creep

Patellofemoral Pain

- 20% incidence in women vs 7% in men
- No single biomechanical risk factor
- Imbalance in the kinetic chain

Abduction and core weakness
Tight laterally Weak medially Laxity
Genu recurvatum
Foot pronation Q angle

Women can be Hard to Study

- General training status and fitness
- Pre-intervention nutritional status
- Type of exercise studied (time trial vs. exercise to exhaustion)
- Duration and intensity of exercise just prior to intervention
- Phase of menstrual cycle, menstrual dysfunction from low EA, perimenopause, menopause, pregnancy, OCP use, PCOS, etc.
- Time-consuming and expensive!

Summary

- Be aware of injuries to which female athletes are susceptible
- We need studies considering female athlete hormonal physiology
- We need to redefine treatment algorithms based on research

Thank you!

Questions?

femaleathleteprogram@childrens.harvard.edu
@DrKateAckerman

